remaCor: Random Effects Meta-Analysis for Correlated Test Statistics

Meta-analysis is widely used to summarize estimated effects sizes across multiple statistical tests. Standard fixed and random effect meta-analysis methods assume that the estimated of the effect sizes are statistically independent. Here we relax this assumption and enable meta-analysis when the correlation matrix between effect size estimates is known. Fixed effect meta-analysis uses the method of Lin and Sullivan (2009) <doi:10.1016/j.ajhg.2009.11.001>, and random effects meta-analysis uses the method of Han, et al. <doi:10.1093/hmg/ddw049>.

Version: 0.0.18
Depends: R (≥ 3.6.0), ggplot2, methods
Imports: mvtnorm, grid, reshape2, compiler, Rcpp, EnvStats, Rdpack, stats
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr, RUnit, clusterGeneration, metafor
Published: 2024-02-08
DOI: 10.32614/CRAN.package.remaCor
Author: Gabriel Hoffman ORCID iD [aut, cre]
Maintainer: Gabriel Hoffman <gabriel.hoffman at>
License: Artistic-2.0
NeedsCompilation: yes
Citation: remaCor citation info
Materials: README NEWS
In views: MetaAnalysis
CRAN checks: remaCor results


Reference manual: remaCor.pdf
Vignettes: remaCor: Random effects meta-analysis for correlated test statistics


Package source: remaCor_0.0.18.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): remaCor_0.0.18.tgz, r-oldrel (arm64): remaCor_0.0.18.tgz, r-release (x86_64): remaCor_0.0.18.tgz, r-oldrel (x86_64): remaCor_0.0.18.tgz
Old sources: remaCor archive

Reverse dependencies:

Reverse imports: dreamlet, variancePartition


Please use the canonical form to link to this page.